Code: 20ME3301

II B.Tech - I Semester – Regular/Supplementary Examinations DECEMBER 2023

FLUID MECHANICS AND HYDRAULIC MACHINES (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks		
	UNIT-I						
1	a)	Define pressure. Derive an expression for	L2	CO1	7 M		
		pressure at a point in a fluid at rest.					
	b)	A U-tube differential manometer connects	L2	CO1	7 M		
		two pressure pipes A and B. Pipe A contains					
		carbon tetrachloride having a specific					
		gravity 1.594 under a pressure of 11.772					
		N/cm ² and pipe B contains oil of specific					
		gravity 0.8 under a pressure of 11.772					
		N/cm ² . Pipe A lies 2.5 m above pipe B. Find					
		the difference of pressure measured as fluid					
		filling U-tube.					
	OR						
2	a)	Explain the working of U- tube differential	L2	CO1	7 M		
		manometer.					

	b)	The dynamic viscosity of an oil, used for	L2	CO1	7 M		
		lubrication between a shaft and sleeve is 6					
		poise. The shaft is of diameter 0.4 m and					
		rotates at 190 rpm. Calculate the power lost					
		in the bearing for a sleeve length of 90 mm.					
		The thickness of the oil film is 1.5 mm.					
		UNIT-II					
3	a)	Derive the one-dimensional continuity	L2	CO2	7 M		
		equation of fluid flow.					
	b)	Define the momentum principle. Write its	L3	CO2	7 M		
		applications.					
		OR		1			
4	a)	Derive Bernoulli's equation from Euler's	L3	CO2	7 M		
		equation of motion. State assumption made.					
	b)	A pipe line AB of diameter 300 mm and of	L2	CO2	7 M		
		length 400 m carries water at the rate of 50					
		lit/s. The flow takes place from A to B					
		where point B is 30 m above. Find the					
		pressure at A if the pressure at B is 19.62					
		N/cm^2 . Take $f = 0.008$.					
	Г	UNIT-III		 			
5	a)	What is an Orifice meter? Derive an	L3	CO3	7 M		
		expression for the discharge thorough an					
		Orifice meter.					
	b)	A horizontal Venturimeter with inlet and	L2	CO3	7 M		
		throat diameters 30 cm and 15 cm					
		respectively is used to measure the flow of					

		water. The reading of differential			
		manometer connected to the inlet and the			
		throat is 20 cm of mercury. Determine the			
		rate of flow. Take $C_d = 0.98$.			
		OR	Τ.Ο.	000	7.14
6	a)	Derive an equation for force exerted by the	L2	CO3	7 M
		jet of water strikes on fixed moving vertical			
		plate.			
	b)	A jet of water of diameter 85 mm moving	L3	CO3	7 M
		with a velocity of 35 m/s strikes a fixed			
		plate in such a way that the angle between			
		the jet and plate is 45°. Find the force			
		exerted by the jet on the plate (i) in the			
		direction normal to the plate and (ii) in the			
		direction of the jet.			
		UNIT-IV			
7	a)	What is draft tube? Describe with neat	L2	CO4	7 M
		sketches different types of draft tubes.			
		1			
	b)	What are unit quantities? Define the unit	L2	CO4	7 M
	b)	What are unit quantities? Define the unit quantities of turbine.	L2	CO4	7 M
	b)	_	L2	CO4	7 M
8	a)	quantities of turbine.		CO4 CO4	
8		quantities of turbine. OR			
8		quantities of turbine. OR Explain the working of Kaplan turbine with	L2		7 M 7 M 7 M
8	a)	quantities of turbine. OR Explain the working of Kaplan turbine with neat sketch.	L2	CO4	7 M
8	a)	Quantities of turbine. OR Explain the working of Kaplan turbine with neat sketch. A turbine develops 9000 kW when running	L2	CO4	7 M

UNIT-V						
9	a)	Differentiate between single-stage and	L2	CO5	7 M	
		multistage pumps. Describe multistage				
		pump with (i) impellers in parallel and				
		(ii) impellers in series.				
	b)	Describe the principle and working of a	L4	CO5	7 M	
		reciprocating pump with a neat sketch.				
OR						
10	a)	Obtain an expression for the work done by	L3	CO5	7 M	
		impeller of a centrifugal pump on water per				
		second per unit weight of water.				
	b)	Draw an indicator diagram, considering the	L2	CO5	7 M	
		effect of acceleration and friction in suction				
		and delivery pipes. Find an expression for				
		the work done per second.				